Thursday, June 27, 2013

A global quantum network

By quantum-mechanically coupling laser-cooled atoms to glass fiber cables, Vienna University of Technology researchers have developed a way to store quantum information over a long enough period of time to allow for entangling atoms hundreds of kilometers apart via fiber cables.

This finding is a fundamental building block for a global fiber-based quantum communication network, the researchers suggest.

By trapping atoms at a distance of about 200 nanometers from a glass fiber (which itself only has a diameter of 500 nanometers), a very strong interaction between light and atoms can be implemented. This allows one to exchange quantum information between the two systems. This information exchange is the basis for technologies like quantum cryptography and quantum teleportation.


Likewise, “quantum repeaters” can be used to link several shorter sections to one long quantum connection. “By using our combined nanofiber-atom-system for setting up an optical quantum network, including quantum repeaters, one might transmit quantum information and teleport quantum states around the world,”

No comments:

Post a Comment